Avian renal proximal tubule urate secretion is inhibited by cellular stress-induced AMP-activated protein kinase.

نویسندگان

  • Amy M Bataille
  • Carla L Maffeo
  • J Larry Renfro
چکیده

Urate is a potent antioxidant at high concentrations but it has also been associated with a wide variety of health risks. Plasma urate concentration is determined by ingestion, production, and urinary excretion; however, factors that regulate urate excretion remain uncertain. The objective of this study was to determine whether cellular stress, which has been shown to affect other renal transport properties, modulates urate secretion in the avian renal proximal tubule. Chick kidney proximal tubule epithelial cell primary culture monolayers were used to study the transepithelial transport of radiolabeled urate. This model allowed examination of the processes, such as multidrug resistance protein 4 (Mrp4, Abcc4), which subserve urate secretion in a functional, intact, homologous system. Our results show that the recently implicated urate efflux transporter, breast cancer resistance protein (ABCG2), does not significantly contribute to urate secretion in this system. Exposure to a high concentration of zinc for 6 h induced a cellular stress response and a striking decrease in transepithelial urate secretion. Acute exposure to zinc had no effect on transepithelial urate secretion or isolated membrane vesicle urate transport, suggesting involvement of a cellular stress adaptation. Activation of AMP-activated protein kinase (AMPK), a candidate modulator of ATP-dependent urate efflux, by 5'-aminoimidazole-4-carboxamide 1-β-d-ribo-furanoside caused a decrease in urate secretion similar to that seen with zinc-induced cellular stress. This effect was prevented with the AMPK inhibitor compound C. Notably, the decrease in urate secretion seen with zinc-induced cellular stress was also prevented by compound C, implicating AMPK in regulation of renal uric acid excretion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facilitated diffusion of urate in avian brush-border membrane vesicles.

Membrane transport pathways mediating transcellular secretion of urate across the proximal tubule were investigated in brush-border membrane vesicles (BBMV) isolated from avian kidney. An inside-positive K diffusion potential induced a conductive uptake of urate to levels exceeding equilibrium. Protonophore-induced dissipation of membrane potential significantly reduced voltage-driven urate upt...

متن کامل

Avian renal proximal tubule epithelium urate secretion is mediated by Mrp4.

Birds are uricotelic and, like humans, maintain high plasma urate concentrations (approximately 300 microM). The majority of their urate waste, as in humans, is eliminated by renal proximal tubular secretion; however, the mechanism of urate transport across the brush-border membrane of the intact proximal tubule epithelium during secretion is uncertain. The dominance of secretory urate transpor...

متن کامل

Urate/ -ketoglutarate exchange in avian basolateral membrane vesicles

Grassl, Steven M. Urate/ -ketoglutarate exchange in avian basolateral membrane vesicles. Am J Physiol Cell Physiol 283: C1144–C1154, 2002. First published June 13, 2002; 10.1152/ajpcell.00379.2001.—Membrane transport pathways for transcellular secretion of urate across the proximal tubule were investigated in avian kidney. The presence of coupled urate/ -ketoglutarate exchange was investigated ...

متن کامل

Regulation of proximal tubule vacuolar H(+)-ATPase by PKA and AMP-activated protein kinase.

The vacuolar H(+)-ATPase (V-ATPase) mediates ATP-driven H(+) transport across membranes. This pump is present at the apical membrane of kidney proximal tubule cells and intercalated cells. Defects in the V-ATPase and in proximal tubule function can cause renal tubular acidosis. We examined the role of protein kinase A (PKA) and AMP-activated protein kinase (AMPK) in the regulation of the V-ATPa...

متن کامل

Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells.

The metabolic sensor AMP-activated protein kinase (AMPK) regulates several transport proteins, potentially coupling transport activity to cellular stress and energy levels. The creatine transporter (CRT; SLC6A8) mediates creatine uptake into several cell types, including kidney epithelial cells, where it has been proposed that CRT is important for reclamation of filtered creatine, a process cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 300 6  شماره 

صفحات  -

تاریخ انتشار 2011